(a) Describe fully a single transformation which maps both

(i) A onto C and B onto D,

(ii) A onto D and B onto C,

(iii) A onto P and B onto Q.

(b) Describe fully a single transformation which maps triangle $0AB$ onto triangle JFE.

(c) The matrix M is $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.

(i) Describe the transformation which M represents.

(ii) Write down the co-ordinates of P after transformation by matrix M.

(d) (i) Write down the matrix R which represents a rotation by 90° anticlockwise about 0.

(ii) Write down the letter representing the new position of F after the transformation $RM(F)$.

(a) Describe fully the single transformation which maps

(i) shape \(A \) onto shape \(B \),

(ii) shape \(B \) onto shape \(C \),

(iii) shape \(A \) onto shape \(D \),

(iv) shape \(B \) onto shape \(E \),

(v) shape \(B \) onto shape \(F \),

(vi) shape \(A \) onto shape \(G \).

(b) A transformation is represented by the matrix \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \).

Which shape above is the image of shape \(A \) after this transformation?

(c) Find the 2 by 2 matrix representing the transformation which maps

(i) shape \(B \) onto shape \(D \),

(ii) shape \(A \) onto shape \(G \).
(a) Describe fully the single transformation which maps
 (i) triangle X onto triangle P,
 (ii) triangle X onto triangle Q,
 (iii) triangle X onto triangle R,
 (iv) triangle X onto triangle S.

(b) Find the 2 by 2 matrix which represents the transformation that maps
 (i) triangle X onto triangle Q,
 (ii) triangle X onto triangle S.

Transformation M is reflection in the line $y = x$.

(a) The point A has co-ordinates $(2, 1)$.

Find the co-ordinates of

(i) $T(A)$, \[1\]

(ii) $MT(A)$. \[2\]

(b) Find the 2 by 2 matrix M, which represents the transformation M. \[2\]

(c) Show that, for any value of k, the point $Q (k - 2, k - 3)$ maps onto a point on the line $y = x$ following the transformation $TM(Q)$. \[3\]

(d) Find M^{-1}, the inverse of the matrix M. \[2\]

(e) N is the matrix such that $N + \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$.

(i) Write down the matrix N. \[2\]

(ii) Describe completely the single transformation represented by N. \[3\]
Answer the whole of this question on a sheet of graph paper.

(a) Draw and label x and y axes from -6 to 6, using a scale of 1 cm to 1 unit. \[1\]

(b) Draw triangle ABC with $A(2,1)$, $B(3,3)$ and $C(5,1)$. \[1\]

(c) Draw the reflection of triangle ABC in the line $y = x$. Label this $A_1B_1C_1$. \[2\]

(d) Rotate triangle $A_1B_1C_1$ about $(0,0)$ through 90° anti-clockwise. Label this $A_2B_2C_2$. \[2\]

(e) Describe fully the single transformation which maps triangle ABC onto triangle $A_2B_2C_2$. \[2\]

(f) A transformation is represented by the matrix \[
\begin{pmatrix}
1 & 0 \\
-1 & 1
\end{pmatrix}
\]

(i) Draw the image of triangle ABC under this transformation. Label this $A_3B_3C_3$. \[3\]

(ii) Describe fully the single transformation represented by the matrix \[
\begin{pmatrix}
1 & 0 \\
-1 & 1
\end{pmatrix}
\] \[2\]

(iii) Find the matrix which represents the transformation that maps triangle $A_3B_3C_3$ onto triangle ABC. \[2\]
(a) On the grid, draw the enlargement of the triangle T, centre $(0, 0)$, scale factor $\frac{1}{2}$. \[2\]
(b) The matrix \(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \) represents a transformation.

(i) Calculate the matrix product \(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 8 & 8 & 2 \\ 4 & 8 & 8 \end{pmatrix} \).

Answer(b)(i) [2]

(ii) On the grid, draw the image of the triangle \(T \) under this transformation.

(iii) Describe fully this single transformation.

Answer(b)(iii) [2]

(c) Describe fully the single transformation which maps

(i) triangle \(T \) onto triangle \(P \),

Answer(c)(i) [2]

(ii) triangle \(T \) onto triangle \(Q \).

Answer(c)(ii) [3]

(d) Find the 2 by 2 matrix which represents the transformation in part (c)(ii).

Answer(d) \(\begin{pmatrix} _ & _ \\ _ & _ \end{pmatrix} \) [2]
(a) On the grid, draw

(i) the translation of triangle T by the vector $\begin{pmatrix} -7 \\ 3 \end{pmatrix}$, \[2\]

(ii) the rotation of triangle T about $(0, 0)$, through 90° clockwise. \[2\]

(b) Describe fully the single transformation that maps

(i) triangle T onto triangle U,

Answer(b)(i) \[2\]

(ii) triangle T onto triangle V.

Answer(b)(ii) \[3\]
(a) Draw the reflection of triangle T in the line $y = 6$.

Label the image A. \[2\]

(b) Draw the translation of triangle T by the vector $\begin{pmatrix} -4 \\ 6 \end{pmatrix}$.

Label the image B. \[2\]
Answer the whole of this question on a sheet of graph paper.

(a) Using a scale of 1 cm to represent 1 unit on each axis, draw an x-axis for \(-6 \leq x \leq 10\) and a y-axis for \(-8 \leq y \leq 8\).
Copy the word EXAM onto your grid so that it is exactly as it is in the diagram above.
Mark the point \(P(6,6)\). [2]

(b) Draw accurately the following transformations.
(i) Reflect the letter \(E\) in the line \(x = 0\). [2]
(ii) Enlarge the letter \(X\) by scale factor 3 about centre \(P(6,6)\). [2]
(iii) Rotate the letter \(A\) 90° anticlockwise about the origin. [2]
(iv) Stretch the letter \(M\) vertically with scale factor 2 and x-axis invariant. [2]

(c) (i) Mark and label the point \(Q\) so that \(\overrightarrow{PQ} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}\). [1]
(ii) Calculate \(|\overrightarrow{PQ}|\) correct to two decimal places. [2]
(iii) Mark and label the point \(S\) so that \(\overrightarrow{PS} = \begin{pmatrix} -4 \\ -1 \end{pmatrix}\). [1]
(iv) Mark and label the point \(R\) so that \(PQRS\) is a parallelogram. [1]
Use one of the letters A, B, C, D, E or F to answer the following questions.

(i) Which triangle is T mapped onto by a **translation**? Write down the translation vector. [2]

(ii) Which triangle is T mapped onto by a **reflection**? Write down the equation of the mirror line. [2]

(iii) Which triangle is T mapped onto by a **rotation**? Write down the coordinates of the centre of rotation. [2]

(iv) Which triangle is T mapped onto by a **stretch** with the x-axis invariant? Write down the scale factor of the stretch. [2]

(v) $M = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$. Which triangle is T mapped onto by M?

Write down the name of this transformation. [2]

(b) $P = \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}$, $Q = (-1 \quad -2)$, $R = (1 \quad 2 \quad 3)$, $S = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$.

Only some of the following matrix operations are possible with matrices P, Q, R and S above. $\text{PQ}, \quad \text{QP}, \quad \text{P + Q}, \quad \text{PR}, \quad \text{RS}$

Write down and calculate each matrix operation that is possible. [6]
4 Answer the whole of this question on a sheet of graph paper.

(a) Draw x- and y-axes from -8 to 8 using a scale of 1 cm to 1 unit.
 Draw triangle ABC with $A(2, 2)$, $B(5, 2)$ and $C(5, 4)$. [2]

(b) Draw the image of triangle ABC under a translation of \[\begin{pmatrix} -9 \\ 3 \end{pmatrix} \].
 Label it $A_1B_1C_1$. [2]

(c) Draw the image of triangle ABC under a reflection in the line $y = -1$.
 Label it $A_2B_2C_2$. [2]

(d) Draw the image of triangle ABC under an enlargement, scale factor 2, centre $(6,0)$.
 Label it $A_3B_3C_3$. [2]

(e) The matrix \[\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \] represents a transformation.
 (i) Draw the image of triangle ABC under this transformation. Label it $A_4B_4C_4$. [2]
 (ii) Describe fully this single transformation. [2]

(f) (i) Draw the image of triangle ABC under a stretch, factor 1.5, with the y-axis invariant.
 Label it $A_5B_5C_5$. [2]
 (ii) Find the 2 by 2 matrix which represents this transformation. [2]

7 Answer the whole of this question on a sheet of graph paper.

(a) Draw x and y axes from 0 to 12 using a scale of 1 cm to 1 unit on each axis. [1]

(b) Draw and label triangle T with vertices $(8, 6)$, $(6, 10)$ and $(10, 12)$. [1]

(c) Triangle T is reflected in the line $y = x$.
 (i) Draw the image of triangle T. Label this image P. [2]
 (ii) Write down the matrix which represents this reflection. [2]

(d) A transformation is represented by the matrix \[\begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \]
 (i) Draw the image of triangle T under this transformation. Label this image Q. [2]
 (ii) Describe fully this single transformation. [3]

(e) Triangle T is stretched with the y-axis invariant and a stretch factor of $1/2$.
 Draw the image of triangle T. Label this image R. [2]
The diagram shows triangles P, Q, R, S, T, and U.

(a) Describe fully the single transformation which maps triangle

(i) T onto P, [2]
(ii) Q onto T, [2]
(iii) T onto R, [2]
(iv) T onto S, [3]
(v) U onto Q. [3]

(b) Find the 2 by 2 matrix representing the transformation which maps triangle

(i) T onto R, [2]
(ii) U onto Q. [2]
(a) Describe fully the single transformation which maps

(i) triangle T onto triangle U,

Answer(a)(i) ... [2]

(ii) triangle T onto triangle V,

Answer(a)(ii) ... [3]
(iii) triangle T onto triangle W.

Answer(a)(iii) ~~~[3]

(iv) triangle U onto triangle X.

Answer(a)(iv) ~~~[3]

(b) Find the matrix representing the transformation which maps

(i) triangle U onto triangle V,

Answer(b)(i) ~~~[2]

(ii) triangle U onto triangle X.

Answer(b)(ii) ~~~[2]
2 (a)

(i) Draw the image when triangle \(A\) is reflected in the line \(y = 0\).
Label the image \(B\). [2]

(ii) Draw the image when triangle \(A\) is rotated through \(90^\circ\) anticlockwise about the origin.
Label the image \(C\). [2]

(iii) Describe fully the single transformation which maps triangle \(B\) onto triangle \(C\).

Answer (a)(iii) .. [2]

(b) Rotation through \(90^\circ\) anticlockwise about the origin is represented by the matrix \(M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\).

(i) Find \(M^{-1}\), the inverse of matrix \(M\).

\[
Answer(b)(i) \quad M^{-1} = \begin{pmatrix} & \\ & \end{pmatrix}
\]

[2]

(ii) Describe fully the single transformation represented by the matrix \(M^{-1}\).

Answer (b)(ii) .. [2]
Draw the images of the following transformations on the grid above.

(i) Translation of triangle A by the vector $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$. Label the image B. [2]

(ii) Reflection of triangle A in the line $x = 3$. Label the image C. [2]

(iii) Rotation of triangle A through 90° anticlockwise around the point $(0, 0)$. Label the image D. [2]

(iv) Enlargement of triangle A by scale factor -4, with centre $(0, 1)$. Label the image E. [2]
where n is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!}$.